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Abstract

The passivity index framework is an alternative method of characterizing energy dissipation
in systems. As an analysis tool, it can be used to assess the level of passivity of a system. This
opens up a much larger class of systems that can be analyzed using results that are similar
to the passivity theorem. Typically indices are considered analytically for systems with an
established model. This paper focuses on an experimental method of determining indices from
input-output data. Particularly, we consider testing passivity indices for vehicle systems with the
adaptive cruise control (ACC) algorithm, and maximizing passivity indices through a numerical
optimization method, the Hooke and Jeeve’s method. Simulations on a virtual car platform are
given to demonstrate the results.
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1 Introduction

Passivity is a dynamic system characterization based on energy dissipation. A passive system is one
that does not generate energy, but only stores and dissipates energy provided by the environment.
The notion of energy is allowed to be general as in, it is not constrained to any physical notion of
energy. This generalized energy is captured by an energy storage function. Passivity is a special
case of dissipativity. The benefit of passivity is that when two passive systems are interconnected
in parallel or in feedback, the overall system is still passive. Thus passivity is preserved when large-
scale systems are created from components that are passive. However this theory is only applicable
to systems that are passive. Passivity indices represent an alternative approach to passivity. They
can be used to measure an excess or shortage of passivity in a particular system by assessing the
feedback and feedforward gains required to render the system passive [1]. As an analysis tool, there
are some existing result to assess stability of a single system as well as of feedback interconnections
using the passivity index framework.

Methods of determining the passivity indices of a system have been reported in the literature.
For instance, it is possible to formulate the search as a traditional LMI optimization problem for
linear systems [2]. For general nonlinear systems, passivity indices may exist for a system, but it
may be difficult to find their values analytically. The main contribution of this paper is methods
of determining passivity indices with experimental testing. Initially, any indices that meet the
conditions are considered. This paper then moves on to discuss numerical optimization methods
to maximize the passivity indices. Since this approach does not require a model of a system,
traditional optimization methods using a gradient are not applicable. Instead, Hooke and Jeeve’s
method [13] is used as it is a derivative-free numerical optimization approach. Simulations of this
method for a virtual car platform are provided to validate the results.

The paper is organized as follows. In Section II, background on passivity and passivity indices is
covered, as well as traditional methods of determining passivity. In Section III, an experimental test
for passivity is given, followed by an experimental passivity test for vehicle systems with adaptive
cruise control (ACC) in Section IV. In Section V, numerical methods for experimental passivity
optimization is discussed with simulation results demonstrated. Finally, concluding remarks are
made in Section VI.

2 Background on Passivity and Passivity Indices

2.1 Defining Passivity and Passivity Indices

This paper will use notions of passivity and passivity indices extensively. While these notions can
be defined for state based systems, this paper will focus mostly on the input-output definition of
these concepts. Before these definitions are introduced, the signals and systems of interest will be
defined.

An m-dimensional continuous time signal u(t) is a mapping from the positive time axis R+ to
the space Rm. If this signal has finite energy over all time, it is considered to be in an L2 signal.
It has L2-norm given by the expression,

‖u‖22 =

ˆ

∞

0
uT(t)u(t)dt < ∞. (1)
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While the space of signals with finite energy is useful, it is not possible to consider unstable
systems without considering a more general space. The extended signal space, L2e, is the set of
signals with finite energy on any finite time interval. A continuous-time signal u : R+ → Rm is in
L2e if

‖uT ‖
2
2 =

ˆ T

0
uT(t)u(t)dt < ∞, ∀T ∈ R

+. (2)

A system H is a mapping from input u ∈ U ⊂ L2e to output y ∈ Y ⊂ L2e, where y ∈ Rm. If u
is a given element of L2e, then Hu denotes an image of u under H, where y = Hu. The notion of
stability used in this paper is L2 stability.

Definition 1 A system H : L2e → L2e is L2 stable if

u ∈ L2 =⇒ y ∈ L2.

An important class of L2 stable systems is the class of systems with finite L2-gain. This concept
can be captured by the following input-output condition.

For all time T ∈ R+ and for all inputs u ∈ L2e, a system H is finite-gain L2 stable if there exist
constants γ > 0 and β such that

‖yT ‖2 ≤ γ‖uT ‖2 + β. (3)

With the appropriate background material presented, the definitions of passivity and passivity
indices can be presented. A system is passive if it only stores and dissipates energy without
generating its own energy. This is captured by an inequality where the energy supplied to the
system by its environment from initial time to time T ,

´ T
0 yT(t)u(t)dt, is an upper bound on the

loss of initially stored energy, −β.

Definition 2 For a system H, consider all inputs u ∈ U ⊂ L2e and all times T ∈ R+. H is
passive if ∃β ≥ 0 such that

ˆ T

0
yT(t)u(t)dt ≥ −β. (4)

An alternative approach to energy-based analysis of dynamical systems is the passivity index
framework [1]. While passivity is only a binary property, a system is passive or not, the passivity
indices capture the level of passivity present in a dynamical system. For example, a system that
is not passive may be “nearly” passive in the sense that a small feedback or feed-forward gain will
make the system passive. Likewise it can be useful to distinguish between systems that just passive
and ones that are “excessively” passive, i.e. dissipate more energy than necessary. The benefit of
using these indices is that a system that is by some measure “nearly” passive may be compensated
by a system in feedback that is “excessively” passive.

The concept of indices came from applying earlier work of conic systems [3, 4] to state space
systems. A detailed survey of passivity indices can be found in [1]. Passivity indices can be defined
for general nonlinear systems in the same framework as passivity.

Definition 3 [1, 5] For a system H, consider all inputs u ∈ U ⊂ L2e and all times T ∈ R+. H
has output feedback passivity (OFP) index ρ and input feed-forward passivity (IFP) index ν if there
exists a constant β such that the following inequality holds,

ˆ T

0

[

(1 + ρν)uTy − ρyTy − νuTu
]

dt ≥ −β, (5)
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2.2 Finding Indices using LMIs

It will be important in this paper to compare the results of experimental passivity to traditional
methods of determining passivity or finding indices from models. This can be done for LTI systems
using linear matrix inequalities (LMIs). Continuous time LTI systems can be defined by the state
space model:

ẋ(t) = Ax(t) +Bu(t) (6)

y(t) = Cx(t) +Du(t). (7)

It will be assumed that this model is minimal, i.e. controllable and observable.
Passivity can be shown for state based systems by defining an energy storage function V (x(t)).

This function is a measure of the internally stored energy of a system. As a generalized notion of
energy, the storage function is non-negative everywhere, V (x(t)) ≥ 0, ∀x. It will be assumed to be
zero at the equilibrium. Without loss of generality, this point can be assumed to be x = 0. Also
without loss of generality, for LTI systems it can be assumed that V has a quadratic form,

V (x(t)) = x(t)TPx(t), (8)

where P = PT. The condition that V (x(t)) be positive can be reduced to the matrix P being
positive semi-definite, P ≥ 0.

For LTI systems, a necessary and sufficient test for passivity indices to hold is that ∃P = PT > 0
such that the following LMI is satisfied:

[

ATP + PA+ ρCTC PB − 1
2(1 + ρν)CT + ρCTD

(PB − 1
2(1 + ρν)CT + ρCTD)T ρDTD − (1 + ρν)(D +DT) + νI

]

≤ 0 . (9)

The LMI can be used for passivity by setting both ρ = 0 and ν = 0. Assuming ρ and ν are fixed,
the LMI is linear in the decision variable (P ) so can be solved using traditional LMI optimization
methods [2].

3 Experimental Passivity

The traditional method of control system design involves modeling the plant to be controlled,
analyzing the plant, and then synthesizing a controller. Using passivity theory or theory from
passivity indices does not require the use of a model. Instead, data can be collected to determine
that a system is passive or that it has certain passivity indices. In most cases, this data collection
must be significantly thorough in order to make these conclusions. However, the amount of data
required is similar to the amount of data required to determine and verify a model.

As in Definition 2, a system is considered passive if it satisfies the following inequality for all
inputs u(t) in a set U ,

ˆ T

0
yT(t)u(t)dt ≥ −β. (10)

To satisfy this definition, the system must satisfy the inequality for all inputs u as well as all finite
times T . The condition should hold for β that can depend on the initial condition and must not
depend on the time T . Of course, it is impossible to test for arbitrarily large T . For example,
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for non-passive unstable systems there always exists a finite β to satisfy the inequality for T up
to a given time. However, as T goes to infinity, the bound involving a finite β will not hold for
non-passive systems.

Alternatively, the inequality can be changed to test for passivity under zero initial conditions.
In this case, the constant β can be taken to be zero. The inequality is then,

ˆ T

0
yT(t)u(t)dt ≥ 0. (11)

In this case, if the inner product of u and y is negative for any T , the test fails. For systems that
are passive with respect to the particular input, the inner product will vary with the input but on
average will grow without bound. If this pattern holds for a sufficiently long initial time interval,
it can be concluded that the inner product will not suddenly differ from this trend unless the input
suddenly changes with regard to signal magnitude, frequency, etc. Depending on the input, this
initial time interval may be shorter or longer.

There are a couple limitations to note with this approach. One is that this experimental result
is a sufficient only test for passivity in a finite duration of time. Another is that the input set U is
often not a finite set in practice. An actual input to a system is likely not to be exactly specified
in advance so will not be contained within a finite set. When the set U contains an infinite set of
inputs, the test for passivity can be modified. A finite subset can be chosen that represents the
diversity of the set U in terms of signal magnitude, frequency content, etc.

A similar approach can be taken to estimate passivity indices for a system. In this case the
inequality to be satisfied takes the following form,

(1 + ρν)

ˆ T

0
yT(t)u(t)dt ≥ ρ

ˆ T

0
yT(t)y(t)dt+ ν

ˆ T

0
uT(t)u(t)dt. (12)

When testing this inequality, the indices can be estimated from each data set and for each time T .
When considering all data, this gives many constraints on the indices. Any algorithm that provides
a final set of indices from this data must give indices that are less than all the bounds. How the
exact indices are chosen from the bounds is another problem. It is often possible to reduce one
index in order to increase the other.

It should be noted that the indices are necessarily going to be larger for a restricted set of inputs
than for any possible input in L2e. Additionally, the algorithm may give bounds that are not tight
for the indices. In this case, a buffer should be introduced to give a more conservative bound on the
indices. This is especially important in the practical case when a representative sample of inputs
is tested rather than the full set. In the following section, the experimental passivity indices will
be tested for the vehicle performance of the adaptive cruise control(ACC) algorithm.

4 Experimental Passivity for Vehicles with ACC

4.1 Modeling Environment

The vehicle modeling environment used to facilitate simulations and to present the passivity-based
optimization is based on MATLAB [6] and CarSim [7].

MATLAB is a programming environment produced by MathWorks for algorithm development,
data analysis, visualization, and numerical computation. Simulink[3] is an environment for mul-
tidomain simulation and Model-Based Design for dynamic and embedded systems. It provides an
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Figure 1: Simulation environment

interactive graphical environment and a customizable set of block libraries that let you design, sim-
ulate, implement, and test a variety of time-varying systems, including communications, controls,
signal processing, video processing, and image processing.

CarSim is a software package that simulate the dynamic behavior of vehicles. In response to
driver controls such as throttle, brakes and steering, the performance of vehicles can be analyzed
in various road environment. CarSim animates simulated tests and outputs over hundreds of
calculated variables to plot and analyze, or export to other software such as MATLAB, Excel, and
optimization tools.

An s-function application programming interface (API) establishes the interface between Car-
Sim and MATLAB/Simulink. All parameters and dynamics of the vehicle is imported into Simulink
model, before the Simulink model typically involves underlying differential equations that are solved
by Simulink using numerical methods. After simulation is finished in Simulink, data is sent back to
CarSim so that a visualized animation can be displayed with CarSim animation viewer SurfAnim.
Fig. 1 shows the overview of our modeling environment.

4.2 Model for ACC

The adaptive cruise control(ACC) algorithm is based on [8], where two hierarchical levels of control
is applied. The upper level controller computes the desired acceleration for the ACC-equipped
vehicle that achieves the desired spacing or velocity. The lower level controller determines whether
to apply braking control or throttle control through a switching logic component, and then a brake
torque or engine torque is computed to achieve the desired acceleration. More details can be found
in [8].

4.3 Simulation Results

In the following, the passivity index of the host vehicle system is estimated through simulations.
Fig. 2 shows a scenario that the host vehicle is collecting information of the lead vehicle and is
following. For the host vehicle system, the velocity of the lead vehicle can be seen as the system
input u, which the velocity of the host vehicle can be seen as the system output y. Both input and

6



Figure 2: Two Vehicle Scenario
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Figure 3: Velocities of Two Cars and Passivity Indices

output are discrete-time vectors with the same length, therefore the experimental passivity test
(12) in Section III can be applied.

In our case, as u and y are always non-negative for any T , the system will always be passive.
However the inner product of u and y will vary with respect to input, i.e. behavior of the lead
vehicle. With different input data set and different selected time intervals, the estimation of the
passivity indices ρ and ν may vary. Therefore this estimation has its limitation if a sufficiently
long time interval is not given. But the input set U or the lead vehicle velocity set in this case
is bounded by mechanical constraints. We can choose a finite subset of the input set to represent
the diversity of the set U in terms of signal magnitude, frequency content, etc., and estimate the
indices accordingly. The estimation may give different bounds for the indices with different time
interval and different samples of inputs, but with sufficient large data sample the bound on the
indices should be relatively conservative.

Fig. 3 show the simulation results of the example in [8]. In the top figure, velocities of the two
cars are plotted. The lead car has the initial velocity of 60 km/h, and then it accelerates during
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0s to 60s 60s to 120s 0s to 120s
ρ 0.9254 0.9895 0.9563
ν 1.0643 1.0069 1.0349

Table 1: Experimental Passivity with Sample Data

the time of 40s to 60s, and decelerates during 70s to 90s. The host car is catching up with the lead
car before 20s, and then it tries to follow the lead vehicle.

In the bottom figure, three estimated boundaries of ρ and ν pair are plotted. For the dashed
line, only input and output data from 0s to 60s is considered. For the red dotted line, only data
from 60s to 120s is considered. And for the solid line, data from 0s to 120s is considered. In the
curves, every point representing a (ρ, ν) pair makes equality holds in (12), i.e.

(1 + ρν)

ˆ T

0
yT(t)u(t)dt = ρ

ˆ T

0
yT(t)y(t)dt+ ν

ˆ T

0
uT(t)u(t)dt. (13)

At the intersection of the curves and axises, the output feedback passivity(OFP) index ρ and input
feedforward passivity(IFP) index ν can be read as in Table I. Clearly, the boundary of passivity
indices is moving due to the data is selected over different time intervals. With sufficient large
data set, the passivity indices are expected to converge to certain fixed points. To maximize the
passivity indices, the numerical optimization method is introduced in below.

5 Numerical Methods for Experimental Passivity Optimization

5.1 Hooke and Jeeve’s method

If the system models are well established and accurate, optimization problems can be solved ef-
ficiently using the evaluation of the derivatives of the cost functions [9, 10, 11]. However, if the
system dynamics and the cost function is greatly affected by nonlinearity or cannot be represented
explicitly, the derivative-based optimization methods could terminate far from the optimum or
even fail. In this case, one can choose direct methods involving only function evaluations as good
alternatives, such as Rosenbrock [12], Hooke and Jeeves [13], and Nelder and Mead [14, 15].

Hooke and Jeeve’s method [16, 17] is a numerical optimization method that does not require the
gradient of the cost function or system performances. It is useful when the optimization problem is
based on functions that are not continuous or not differentiable. Hooke and Jeeve’s method works
by creating a set of search directions iteratively. The created search directions span the search
space such that starting from any point in the search space, any other point in the search space can
be reached by traversing along these search directions only. One benefit is that only the current
point and the next exploratory move is needed during the search, therefore the algorithm is efficient
in terms of memory space used.

In the Hooke and Jeeve’s method, a combination of exploratory moves and heuristic pattern
moves is made iteratively. To maximize a cost function f(x) with x ∈ Rn, the procedure of Hooke
and Jeeve’s method is to first explore the neighborhood of current base point xk in every direction
with a small increment εi. With variables in all directions considered, a new base point xk+1 will
be reached to maximize f(x). If no function maximization is achieved, the step length εi will be
reduced, otherwise a pattern move attempting to speed up the search will be made.
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Initial Point [1, 1] [2,−1] [−1, 1] [−1,−1]
Optimal Point [3, 2] [3.58,−1.85] [−2.81, 3.13] [−3.78,−3.28]

Table 2: Hooke and Jeeve’s method optimization
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Figure 4: Hooke and Jeeve’s method optimization

The following example illustrates how Hooke and Jeeve’s methods works. Consider the Him-
melblau function [17]

min f(x1, x2) = (x21 + x2 − 11)2 + (x1 + x22 − 7)2

We choose four different initial points [1, 1] , [2,−1] , [−1, 1] , [−1,−1], then the optimization
results given by the Hooke and Jeeve’s method will converge to four different local minimum, see
Table 2 and Fig. 4.

In our case of adaptive cruise control algorithm, when the lower level controller applies throttle
control or braking control, a proper engine speed is needed to generate the desired engine torque.
This is performed by interpolating the data from an experimentally determined lookup table, called
inverse engine map. To optimize the performance of such ACC algorithm, Hooke and Jeeve’s
method can be used as a derivative-free or black-box method.

5.2 Optimization of Passivity Indices

We focus on the PI controller in the throttle control unit, see Fig. 5. The parameters set kp, ki in
the PI controller consist of the search space in Hooke and Jeeve’s method. Then the optimization
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Figure 5: Throttle Controller

problem can be stated as follows,
max

x=[kp,ki]T
ρ(u, y(u, x)) (14)

The simulation results are shown below. The velocity of the lead vehicle is designed to be a sinusoid
wave, however the velocity of host vehicle is not sinusoid according to the simulations.

The initial search point (Kp,Ki) = (1.5, 40). After about 30 iterations, Hooke and Jeeve’s
method stops at the optimal point (Kp,Ki) = (3.75, 10) with maximal ρ = 0.98914

Initial, intermediate and end points and the host vehicle behavior are shown in Fig. 6. Notice
that at the intermediate point there might be jitters along the velocity trajectory when the host
vehicle is try to catch up with the lead vehicle. Comparing to smooth trajectories, jitter curves
does not fit the lead vehicle velocity curve very well. In terms of passivity, it means the passivity
indices are not optimal.
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(a) Initial Point
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(b) Intermediate Point
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(c) Final Point

Figure 6: Passivity Indices Optimization

Due to physical constraints, the speed of the lead vehicle can not change dramatically. In
another word, if we decompose the input signal(speed) into Fourier series, the coefficients of high
frequency parts can be neglected. In the simulations, we select three different frequencies and
make the speed of the lead vehicle sinusoid waves with corresponding frequencies, see Fig. 7. The
optimization results are different in each case (Table 3), but overall they can give a loose bound of
suboptimality and a good intuition for our problem.
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f = 0.01 f = 0.05 f = 0.1
Non-optimized Gains Kp = 1.5,Ki = 40 Kp = 1.5,Ki = 40 Kp = 1.5,Ki = 40
Optimized Gains Kp = 2.625,Ki = 10 Kp = 1.5,Ki = 0 Kp = 0.375,Ki = 40

Table 3: Optimization of Kp,Ki
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(a) f = 0.01

0 0.5 1 1.5 2 2.5 3
x 104

40

60

80

100

Input and Output

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

rho

nu

Passivity Indices

(b) f = 0.05
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(c) f = 0.1

Figure 7: Simulations with sinusoidal inputs of different frequencies

6 Conclusions

In this paper, methods of determining passivity indices are considered. Besides the traditional
analytical methods, the experimental passivity testing method is also discussed. Particularly, we
consider testing passivity indices for vehicle systems with adaptive cruise control(ACC) algorithm,
and maximizing passivity indices through a numerical optimization methods, the Hooke and Jeeve’s
method. Simulations on virtual car platform are given to demonstrate the results.
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